

Journal of Organometallic Chemistry 520 (1996) 139-142

## Multiple bonds between main group elements and transition metals, 155<sup>-1</sup>. (Hexamethylphosphoramide) methyl( $\infty o$ ) bis( $\eta^2$ -peroxo) rhenium(VII), the first example of an anhydrous rhenium peroxo complex: crystal structure and catalytic properties<sup>-2</sup>

Wolfgang A. Herrmann<sup>\*</sup>, João D.G. Correia, Georg R.J. Artus, Richard W. Fischer<sup>3</sup>, Carlos C. Romão<sup>4</sup>

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

Received 7 February 1996

#### Abstract

Methyl(oxo)bis( $\eta^2$ -peroxo)rhenium(VII) 1, the active species of the system CH<sub>3</sub>ReO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> in the catalytic oxidation of different organic and organometallic compounds, is stabilized by a water molecule attached to the rhenium center. This water molecule can be removed and substituted by hexamethylphosphoramide (HMPA) to yield (hexamethylphosphoramide)methyl(oxo)bis( $\eta^2$ -peroxo)rhenium(VII) (3). The synthesis, crystal structure (X-ray diffraction study), and catalytic properties of which compound are reported. Crystal data are as follows: monoclinic, space group  $P_{2_1/n}$ , a = 900.76(7) pm, b = 1229.80(11) pm, c = 1318.57(11) pm,  $\beta = 90.251(7)^\circ$ ,  $R_w = 0.034$  for 1878 reflections. The catalytic properties of compound 3 in the oxidation of olefins with H<sub>2</sub>O<sub>2</sub> are similar to those of 1.

Keywords: Rhenium; Methyl(oxo)bis( $\eta^2$ -peroxo)rhenium(VII); Crystal structure

## **1. Introduction**

The bis(peroxo)rhenium(VII) complex  $CH_3ReO_{(O_2)_2} \cdot H_2O$  (1), the catalytic active species of the system  $CH_3ReO_3/H_2O_2$ , was isolated and structurally fully characterized [2a,3a] in an earlier study from our laboratory. This complex is the intermediate responsible for the catalytic oxidation of alkenes [3] and alkynes [4], aromatic compounds [5], organic sulfides [6], phosphines, triphenylarsine and triphenylstibine [7], tertiary amines [8] and for the *Baeyer-Villiger* oxidation [9].

Owing to the metal Lewis-acidity of the peroxo complex 1 ( $\text{Re}^{VII}$ ) and the aqueous conditions of its preparation, a water molecule is attached to the rhenium center. A fast exchange process of this water molecule can be observed by <sup>17</sup>O-NMR spectroscopy in solution, indicating that the Re-OH<sub>2</sub> bond may be weaker than initially predicted [3a].

Interestingly, the first inorganic binuclear peroxo complex of  $\text{Re}^{VII}$ ,  $O[\text{Re}(O_2)_2O]_2 \cdot (H_2O)_2$  (2) [5b], also exhibits coordinated water molecules. This complex is considered to be the catalytic active species of the system  $\text{Re}_2O_7/\text{H}_2O_2$  in the oxidation of olefins, aromatic compounds, and metal carbonyl complexes [5b]. Unlike 1,  $O[\text{Re}(O_2)_2O]_2 \cdot (H_2O)_2$  is highly sensitive to hydrolysis, affording the unreactive perthenic acid (H[ReO<sub>4</sub>]). For this reason, the binuclear complex 2 is not a catalyst in spite of the pronounced oxidative properties.

Now we describe the first water-free  $\text{Re}^{VI}$  peroxo complex in the solid phase [10a].

Corresponding author.

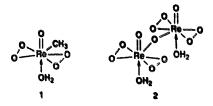
<sup>&#</sup>x27; Ref. [1].

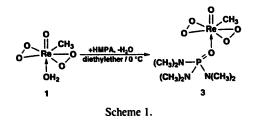
<sup>&</sup>lt;sup>2</sup> In memory of Professor Hidemasa Takaya, who died during the Vth Königstein/Kreuth Conference on Organometallic Chemistry, October 4, 1995.

<sup>&</sup>lt;sup>3</sup> Present address: Hoechst AG, Corporate Research, C487, D-65926 Frankfurt am Main, Germany.

<sup>&</sup>lt;sup>4</sup> Permanent address: Instituto de Tecnologia Química e Biológica, Rua da Quinta Grande 6, 2780 Oeiras, Portugal.

### 2. Synthesis, structure, and spectroscopy


Hexamethylphosphoramide (I'MPA) is often used to stabilize peroxo complexes of molyodenum and tungsten [10b]. Until now it has not been used in rheniumcontaining systems, so the influence of this ligand on the catalytic properties of the system  $CH_3ReO_3/H_2O_2$ is still unknown. Slow addition of dry HMPA to a yellow-orange ethereal solution of 1 at 0°C immediately affords 3 as orange crystals (Scheme 1).


The product is soluble in methylene chloride but, unlike 1, it is insoluble in diethylether. It is also less hygroscopic, melts at 63-65°C (decomp. 70-77°C) and can be handled under air for at least 1 h without decomposition. The IR spectrum in methylene chloride shows the absorption bands of the terminal oxo ligand ( $\nu$ (Re=O) = 992 cm<sup>-1</sup>), the  $\eta^2$ -peroxo groups (871 cm<sup>-1</sup>), and a band corresponding to the coordinated HMPA molecule (Re-O-P, 1158 cm<sup>-1</sup>). The latter is in the range normally observed for the interactions between P=O and other different metals [11]. Bands corresponding to ReOOH groups are not observed.

The peroxo complex 3 reacts stoichiometrically with cis-cyclooctene in dry THF at room temperature, yielding quantitatively cyclooctene oxide in the same way as previously observed for 1 [3a]. This supports the presence of an intermediate containing  $\eta^2$ -peroxo groups in the catalytic olefin oxidation mediated by H<sub>2</sub>O<sub>2</sub>/CH<sub>3</sub>ReO<sub>3</sub>.

To determine the solid-state structure of 3, a single crystal X-ray analysis was performed (Fig. 1). The trigonal bipyramidal geometry of the complex is similar to that of compound 1 [3a]. All atom-atom distances within the CH<sub>3</sub>Re(O)(O<sub>2</sub>)<sub>2</sub> fragment are almost identical, and the observed angles show no significant differences either. However, the distance Re1-O6 (2.175(4) Å) is significantly shorter than the distance Re-OH<sub>2</sub> in 1 (2.253(4) Å), reflecting the more pronounced donor quality of the phosphine oxide as compared with water, quite in accord with the IR and NMR experiments in solution: the IR spectrum of 3 in solution (CH<sub>2</sub>Cl<sub>2</sub>) shows a shift of the Re=O band to shorter wavenumbers (992 cm<sup>-1</sup>) compared with the Re=O stretching band of the precursor compound 1 (1020 cm<sup>-1</sup>).

In the <sup>17</sup>O-NMR spectra, the terminal oxo peak (Re=O) of 1 occurs at 760 ppm (CDCl<sub>3</sub>,  $-25^{\circ}$ C),





while in 3 the same peak is shifted to lower field (774 ppm, CDCl<sub>3</sub>,  $-25^{\circ}$ C). In fact, it is known that for complexes of the type CH<sub>3</sub>ReO<sub>3</sub> · L (L = N-base), the more pronounced the donor properties of the ligand the lower field the terminal oxo peak is shifted [12]. This shift is obviously due to a higher electron density at the rhenium center.

In spite of the different geometries of the complexes  $CH_3ReO_3 \cdot L$  (L trans to the  $CH_3$  group) and  $CH_3Re(O)(O_2)_2 \cdot L$  (L = H<sub>2</sub>O or HMPA, L trans to the oxo group), the observed IR and <sup>17</sup>O-NMR shifts can be compared since the terminal oxo groups (Re=O) are in both cases influenced by the higher electron density at the rhenium center caused by the ligands [12a].

### 3. Catalysis

Use of a mixture of  $CH_3ReO_3$  (1 mol%)/HMPA (6 mol%) as catalyst in the oxidation of cyclohexene with  $H_2O_2$  in 'BuOH (room temperature) leads to 100% conversion of the starting material, but surprisingly no epoxide is obtained. Instead, the oxirane ring is opened

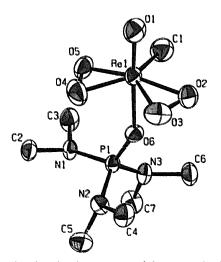



Fig. 1. Crystal and molecular structure of the peroxorhenium(VII) 3 [13]. Ellipsoids are drawn at 50% probability level, hydrogen atoms are omitted for clarity. Selected distances (Å) and angles (°): Re1-O1 1.676(5), Re1-O2 1.905(5), Re1-O3 1.921(5), Re1-O4 1.917(4), Re1-O5 1.915(5), Re1-O6 2.175(4), Re1-C1 2.132(7), O2-O3 1.463(7), O4-O5 1.482(7), P1-O6 1.487(4), O1-Re1-O6 176.1(2), O1-Re1-C1 93.6(3), O6-Re1-C1 82.6(2), Re1-O6-P1 149.5(3).

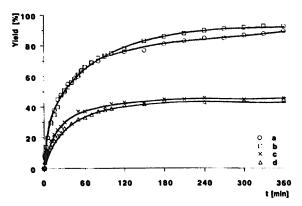



Fig. 2. Catalytic activity of CH<sub>3</sub>ReO<sub>3</sub> (a, c), 3 (b), and CH<sub>3</sub>ReO<sub>3</sub> /HMPA (d) in the oxidation of *cis*-cyclooctene to cyclooctene oxide with H<sub>2</sub>O<sub>2</sub>. (a, b) *cis*-Cyclooctene: H<sub>2</sub>O<sub>2</sub>: [cat.] 1:1.5:0.005; (c, d) *cis*-cyclooctene:H<sub>2</sub>O<sub>2</sub>:[cat.]:HMPA (only in curve D) 1:1.5:0.003:0.015;  $T = 25^{\circ}$ C.

consecutively to form 1,2-dihydroxycyclohexane and 1-'butoxy-2-hydroxycyclohexane, as in the case of CH<sub>3</sub>ReO<sub>3</sub>.

Since HMPA does not seem to have any influence on the chemoselectivity of the system  $CH_3ReO_3/H_2O_2$ , we studied the epoxidation of *cis*-cyclooctene. For the sake of further comparison two sets of experiments were performed.

(a) The catalytic activity of  $CH_3ReO_3$  ([cat.]  $\approx 0.5$  mol%) was compared with that of isolated 3 (curves a and b respectively in Fig. 2). The activities of the catalysts are not very different from each other.

(b) The catalytic activity of  $CH_3ReO_3$  ([cat.]  $\approx 0.3$  mol%) was compared with that of the system  $CH_3ReO_3$  (1 mol%)/HMPA (5 mol%) (curves c and d respectively in Fig. 2). As seen in Fig. 2, the HMPA ligand once again does not reveal any influence on the catalytic activity.

### 4. Conclusion

The oxidation catalysts of type  $CH_3ReO_3 \cdot S$  (S = H<sub>2</sub>O, HMPA) show an almost identical performance in the oxidation of olefins by means of hydrogen peroxide, in contrast to the results known for  $CH_3Re(O)(O_2)_2 \cdot L$ (L = N-base, e.g. quinuclidine). This difference is likely to result from a faster exchange process of the solvent ligands H<sub>2</sub>O and HMPA under catalytic conditions. Thus, the Lewis-acidity of the catalytic system is still high enough to allow the oxirane ring opening. As compared with the P=O group of HMPA, the N-base ligands are the stronger donors at Re<sup>VII</sup> and thus avoid the acid-catalyzed epoxide hydrolysis. At this moment we are concentrating our attention on the isolation and structural characterization of complexes of the type  $CH_{3}Re(O)(O_{2})_{2} \cdot L (L = N-bases, N-oxides)$  as well as on their catalytic properties.

### 5. Experimental details

All reactions were performed with standard Schlenk techniques in oxygen-free and water-free nitrogen atmosphere. Solvents were dried with standard methods and distilled under N2. Infrared spectra were recorded on a Perkin-Elmer 1600 series FTIR spectrometer (resolution 4 cm<sup>-1</sup>); the <sup>1</sup>H- and <sup>17</sup>O-NMR spectra, at 399.78 and 54.21 MHz respectively, were recorded on an FT-JEOL GX 400 instrument. All NMR solvents were "freeze-pump-thaw" degassed and stored over molecular sieves before use. Elemental analyses were performed in the microanalytical laboratory of our institute. The catalytic reactions were monitored on a HP 5890 (GC) equipped with a fused-silica column (HP-1) (No. 19091Z-102, l = 50 m,  $\phi = 0.2$  mm, thickness of film 0.33  $\mu$ m) as well as an FI-detector. Methy(oxo)bis( $\eta^2$ peroxo)rhenium(VII) (1) was prepared according to Ref. [3a].

# 5.1. Preparation of (Hexamethylphosphoramide)methyl ( $\infty o$ )-bis( $\eta^2$ -peroxo)rhenium(VII) (3)

0.59 g (2.2 mmol) of 1 was dissolved at 0°C under nitrogen atmosphere in 10 ml of dry diethylether. To the cooled (0°C) solution was added dropwise hexamethylphosphoramide (0.4 ml, approximately 2.2 mmol) dissolved in 2 ml of diethylether. A red-orange crystalline solid precipitated immediately. The remaining solvent was filtered and the solid washed with diethylether  $(2 \times)$  and n-pentane  $(2 \times)$ . After drying under high vacuum, 0.902 g (1.96 mmol, 98%) of orange-reddish crystals of 3 was obtained. M.p. 63-65°C (decomp. 70-77°C). IR (CH<sub>2</sub>Cl<sub>2</sub>):  $\nu$ (P=O-Re) 1158s, (P-N-C) 1069vw, (Re=O) 992vs, (O<sub>2</sub>) 871s cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>, 25°C):  $\delta = 2.54$  (d, J(H,H) = 10Hz, 18H, N(C $H_3$ )<sub>2</sub>); 2.76 (s, 3H, Re-CH<sub>3</sub>) ppm. <sup>13</sup>C-NMR (100.5 MHz, CDCl<sub>3</sub>, 25°C):  $\delta = 30.62$  (Re-CH<sub>3</sub>); 37.05 (N(CH<sub>3</sub>)<sub>2</sub>) ppm. <sup>17</sup>O-NMR (54.2 MHz, CDCl<sub>3</sub>,  $-20^{\circ}$ C):  $\delta = 774$  (Re=O) ppm. Anal. Found: C, 18.23; H, 4.65; N, 9.27; O, 21.47; Re, 39.19.  $C_7H_{21}N_3O_6PRe$ (460.44) Calc.: C, 18.25; H, 4.60; N, 9.12; O, 20.84; Re, 40.44%.

## 5.2. X-ray structure determination of (Hexamethylphosphoramide)methyl(oxo)bis( $\eta^2$ -peroxo)rhenium(VII) (3)

A single crystal of deep orange colored **3** was prepared under air and mounted in a glass capillary on an image plate diffraction system (IPDS, STOE). Final lattice parameters were obtained by least-squares refinement of 1818 reflections with  $I/\sigma(I) > 6$  (graphite monochromator,  $\lambda = 71.073$  pm, Mo K  $\alpha$ ). Monoclinic system, space group  $P2_1/n$  (International Tables, no. 14), a = 900.76(7) pm, b = 1229.80(11) pm, c =

1318.57(11) pm,  $\beta = 90.251(7)^\circ$ ,  $V = 1460.6 \times 10^\circ$ pm<sup>3</sup>,  $\rho_{calc} = 2.09$  g cm<sup>-3</sup>, Z = 4. Data were collected at  $-50(\pm 0.3)$ °C, distance from crystal to image plate 80 mm (2.86° <  $2\theta$  < 48.4°), 101 images collected, 0° <  $\varphi$ < 101°,  $\Delta \varphi = 1^\circ$ , exposure time 6 min per image. Data were corrected for Lorentz and polarization terms. 4524 data measured, 76 overflows, 0 overlaps, 54 reflections systematically absent, 4470 data merged, 1993 independent reflections, 115 with negative intensity, 1878 reflections with  $I/\sigma(I) > 0$  used for refinement, Chebyshev weighting scheme [14]. The structure was solved by the Patterson method [15] and refined with standard difference Fourier techniques [15]. All hydrogen atoms could be found by difference Fourier maps, but they were not refined. 163 parameters refined, 11.5 data per parameter, residual electron density  $+0.89 \text{ e} \text{ Å}^{-3} 102$ pm near Re,  $-0.73 \text{ e} \text{ Å}^{-3}$ , R = 0.034,  $R_w = 0.034$ .

Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany, on quoting the depository number CSD-404777, the journal citation and the names of the authors.

#### 5.3. Catalytic reactions

## **5.3.1.** Preparation of oxidation solution (10% $H_2O_2$ in <sup>1</sup>BuOH)

<sup>1</sup>BuOH (1 1) was maintained at 25-30°C and mixed with 0.1 1 of 85%  $H_2O_2$  in  $H_2O$ . The solution was stirred with anhydrous MgSO<sub>4</sub> (ca. 100 g) for 3 h and then filtered.

### 5.3.2. General procedure for catalytic oxidation

The catalyst (0.08–0.05 mmol) and dibutyl ether (1.94 g, internal standard) were dissolved in the oxidation solution (8.7 ml, 25 mmol  $H_2O_2$ ). Free HMPA (0.035 ml, 0.25 mmol) was then added (only for curve d) and the temperature was maintained at  $25 \pm 1^{\circ}C$ . 2 g (17 mmol) of *cis*-cyclooctene was added. The reaction was monitored by GC using an FI-detector. The results are presented in Fig. 2.

### Acknowledgements

Special acknowledgement is given to the Deutsche Akademische Austauschdienst (DAAD) for a grant to J.D.G.C. and for generous support through an INIDIA grant for the German–Portuguese collaboration.

### References

- Preceding paper (no. 154) of this series: W.A. Herrmann, M.U. Rauch and P.W. Roesky, J. Organomet. Chem., 511 (1996) 299.
- [2] Reviews: (a) W.A. Herrmann, J. Organomet. Chem., 500 (1995) 149; (b) W.A. Herrmann, J. Organomet. Chem., 300 (1986) 111.
- [3] (a) W.A. Herrmann, R.W. Fischer, W. Scherer and M.U. Rauch, Angew. Chem., 105 (1993) 1209; Angew. Chem., Int. Ed. Engl., 32 (1993) 1157; (b) W.A. Herrmann, R.W. Fischer and D.W. Marz, Angew. Chem., 103 (1991) 1706; Angew. Chem., Int. Ed. Engl., 30 (1991) 1638; (c) W.A. Herrmann, R.W. Fischer, M.U. Rauch and W. Scherer, J. Mol. Catal., 86 (1994) 243; (d) A. Al-Ajloun and J.H. Espenson, J. Am. Chem. Soc., 117 (1995) 9243.
- [4] Z. Zhu and J.H. Espenson, J. Org. Chem., 60 (1995) 7728.
- [5] (a) W. Adam, W.A. Herrmann, J. Lin, C.R. Saha-Möller, R.W. Fischer and J.D.G. Correia, Angew. Chem., 106 (1994) 2545; Angew. Chem., Int. Ed. Engl., 33 (1994) 2475; (b) W.A. Herrmann, J.D.G. Correia, F.E. Kühn, G.R.J. Artus and C.C. Romão, Chem. Eur. J., 2 (1996) 140; (c) E.I. Karasevich, A.V. Nikitin and V.L. Rubailo, Kinet. Catal., 35 (1994) 810; (d) S. Yamazaki, Chem. Lett., (1995) 127.
- [6] K.A. Vassell and J.H. Espenson, Inorg. Chem., 33 (1994) 5491.
- [7] M.M. Abu-Omar and J.H. Espenson, J. Am. Chem. Soc., 117 (1995) 272.
- [8] Z. Zhu and J.H. Espenson, J. Org. Chem., 60 (1995) 1326.
- [9] W.A. Herrmann, R.W. Fischer and J.D.G. Correia, J. Mol. Catal., 94 (1994) 213.
- [10] (a) Compound 3 is the first water-free  $Re^{VH}$  peroxo complex isolated in the solid state, however, the compound CH<sub>1</sub>ReO(O<sub>2</sub>)<sub>2</sub> has already been characterized in the gas phase: W. Scherer, *Ph.D. Thesis*, Technische Universität München, 1994; (b) M.H. Dickman and M.T. Pope, *Chem. Rev.*, 94 (1994) 569.
- [11] P.L. Goggin in G. Wilkinson, R.D. Gillard and J.A. McCleverty (eds.), *Comprehensive Coordination Chemistry*, Vol. 2, Pergamon, Oxford, 1987, p. 487.
- [12] (a) F.E. Kühn, *Ph.D. Thesis*, Technische Universität München, 1994; (b) W.A. Herrmann, F.E. Kühn and P.W. Roesky, *J. Organomet. Chem.*, 485 (1995) 243; (c) W.A. Herrmann, F.E. Kühn, M.U. Rauch, J.D.G. Correia and G. Artus, *Inorg. Chem.*, 34 (1995) 2914.
- [13] A.L. Spek, PLATON-93, Acta Crystallogr., A46 (1990) C34.
- [14] J.R. Carruthers and D.J. Watkin, Acta Crystallogr., A35 (1979) 698,
- [15] D.J. Watkin, P.W. Betteridge and J.R. Carruthers, *CRYSTALS*, Oxford University Computing Laboratory, Oxford, 1986.